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Abstract. The extraction of gravity anoma-
lies from airborne strapdown INS gravimetry
has been mainly based on state-space approach
(SSA), which has many advantages but displays
a serious disadvantage, namely, its very limited
capacity to handle space correlations (like the
rigorous treatment of cross-over points). This
paper examines an alternative through the well
known geodetic approach, where the INS diffe-
rential mechanization equations are interpreted
as a least-squares network parameter estimation
problem. The authors believe that the above ap-
proach has some potential advantages that are
worth exploring. Mainly, that modelling of the
Earth gravity field can be more rigorous than
with SSA and that external observation equa-
tions can be better exploited.
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1 Motivation

A relatively recent technique in the field of air-
borne kinematic gravimetry is the combined use
of strapdown inertial navigation systems (strap-
down INS or SINS) —or inertial measurement
units (IMU)— and the Global Positioning Sys-
tem (GPS) —Schwarz (1985). We will refer to it
as INS/GPS-gravimetry. INS/GPS-gravimetry
uses the differences between the linear accele-
rations measured by the accelerometers of an
IMU and the accelerations derived from GPS.
INS/GPS-gravimetry is mainly affected by two
error sources: short term GPS-derived accele-
ration errors and long term INS inertial sensor
errors —Schwarz and Li (1995).

For geoid determination applications, short
term errors —i.e., the noise of GPS-derived
accelerations— have been identified as one of the

limiting factors of the technique. Fortunately,
the situation is likely to improve significantly
with the advent of the European global naviga-
tion satellite system Galileo because of its higher
signal-to-noise ratio and with the subsequent use
of hybrid Galileo/GPS receivers.

On the long wavelength side of the problem,
the correct measurement of gravity —or, rather,
of the anomalous gravity field— with INS/GPS-
gravimetry depends on the correct separation of
the INS/GPS errors from the actual variations of
the gravity field itself (now, the long-wavelength
bias stability is the limiting factor). This sepa~
ration is, in principle, feasible because of the dif-
ferent characteristics of the two signals: errors of
the inertial sensors can be reasonably modeled
as time functions, whereas the variations of the
gravity field are, strictly, spatial functions. (Un-
derstandably, so far, most of the research has fo-
cused on the INS/GPS short wavelength errors
as the practical use of the technique and its com-
petitiveness with traditional terrestrial gravime-
try is bounded by, moderate to high, precision
and resolution thresholds.) An improvement of
the calibration of inertial sensors may be seen
as an improvement of the long wavelength er-
rors of INS/GPS-gravimetry. By doing so, we
are not only achieving an overall improvement of
INS/GPS-gravimetry but, in particular, we are
extending its spectral window of applicability.
This extension might be instrumental to the inte-
grated use of GOCE gravimetry and INS/GPS-
gravimetry as the sole means of gravimetry for
geoid determination.

In this paper, we investigate algorithms to bet-
ter calibrate the systematic errors of the iner-
tial sensors. More specifically, we investigate an
alternate procedure to the traditional Kalman
filtering and smoothing. The advantage of the
“new” procedure is that it can assimilate all the
information available in a gravimetric aerial mis-
sion; from ground gravity control to the cross-
over conditions, among other observational in-



formation types. The proposed procedure is no-
thing else than geodesy as usual in that we re-
define the INS/GPS-gravimetry problem as a
network adjustment problem —early studies can
be seen at Forsberg (1986) for least-squares me-
thods in land-based and helicopter-based inertial
gravimetry.

Last, we note that better and more reliable
algorithms for inertial sensor calibration may al-
low the use of low noise inertial sensors even if
they suffer from large drifts. This, in turn, has a
positive impact on the low frequency end of the
INS/GPS-gravimetry spectral window.

2 INS/GPS-gravimetry:
geodesy as usual

So far, extraction of gravity anomalies from
INS/GPS-gravimetry has been mainly based on
a state-space approach (SSA): the output of the
stochastic dynamical system defined by the INS
mechanization equations is Kalman-filtered and -
smoothed with the GPS-derived positions and/or
velocities — see Schwarz (1985), Wei and Schwarz
(1990), Schwarz and Li (1995), Tomé (2002).

In INS/GPS-gravimetry, the separation of the
INS/GPS errors from the variations of the gra-
vity field is obtained by the use of appropriate
models —e.g., stochastic differential equations—
for the IMU sensor systematic errors and for the
gravity field anomalies. Given the INS mechani-
zation equations, the IMU calibration equations
and the gravity field variation equations (sic),
the SSA generates “optimal” estimates for the
IMU trajectory (position, velocity and attitude),
for the IMU errors and for the gravity field dif-
ferences with respect to some reference gravity
model.

In INS/GPS-gravimetry, the SSA is essentially
given —Wei and Schwarz (1990)— by
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where r¢ and v¢ are the position and velocity
vectors in the Conventional Terrestrial frame (e);
R; is the transformation matrix from the body
frame (b) to the e-frame; wg, = (0,0, w,)? where
we is the rate of Earth rotation; g€ is the gravity
vector as a function of 7% w} and w, are the
generalized white-noise processes of the specific

force (f°) and angular velocities (w5), inertial
observations respectively.

The numerical solution of this system can take
many different forms which may be model-based
or not, see Hammada and Schwarz (1997). It
should be noted that hardly any of the active
groups working on these problems uses Kalman
filtering as a standard procedure today. Typi-
cally a two-step procedure is employed: in a first
stage, FIR filtering or something similar to take
care of time-dependent errors, and in a second
stage, a cross-over adjustment to take care of the
spatial structure of the gravity field.

The key to overcome SSA limitations is to
look at the system equations (1) as a stochastic
differential equations (SDE) that, through dis-
cretization, leads us to a time dependent geodetic
network as discussed in —Térmens and Colom-
ina (2003), Colomina and Bldzquez (2004)— for
geodetic, photogrammetric and remote sensing
applications. A time dependent network is a net-
work such that some of its parameters are time
dependent or, in other words, stochastic pro-
cesses. A time dependent network can be seen as
a classical network that incorporates stochastic
processes and dynamic models. A classical net-
work can be seen as a particular case of a time
dependent network.

To solve a time dependent network is to per-
form an optimal estimation of its parameters
which may include some stochastic processes. As
usual, the solution of the network will end in a
large, single adjustment step where all parame-
ters, time dependent and independent, will be
simultaneously estimated.

In a time dependent network we may have
static and dynamic observation models. A static
observation model is a traditional observation
equation. A dynamic observation model —or a
stochastic dynamic model— is an equation of the
type

L) + (), (), #(6) =0 (2)
where f is the mathematical functional model, ¢
is the time, £(t) is the time dependent observa-
tion vector, w(t) is a white-noise generalized pro-
cess vector, x(t) is the network parameter vector
and %(t) the time derivative of z(t). Note that
x(t) contains stochastic processes that, in par-
ticular, may be random constants thus including
traditional time independent parameters. The
discretization of the dynamic observation models
together with the static observation models and
further network least-squares adjustment will be



referred to as the network approach (NA).

In general, NA has many potential advantages
compared to SSA: parameters may be related by
observations regardless of time; networks can be
static and/or dynamic; covariance information
can be computed selectively; and variance com-
ponent estimation can be performed. In the con-
text of INS/GPS-gravimetry the authors believe
that some of the NA potential advantages are sig-
nificant: modeling of the Earth gravity field can
be more rigorous than with the SSA; external ob-
servational information can be better exploited;
and more information for further geoid determi-
nation is produced. The main drawback of NA is
that it cannot be applied to real-time INS/GPS
navigation but this is certainly not an issue for
a geodetic gravimetric task.

3 INS/GPS-gravimetry
models for the NA

In this section we review the dynamic and static
observation models that can be assimilated by
the NA for INS/GPS-gravimetry. We note that
the set of dynamic observation models corres-
ponds to what is called the system in stochastic
modeling and estimation. Analogously, the set of
static observation models corresponds to what is
called the observations. In the context of time
dependent networks —Colomina and Blazquez
(2004)— the names dynamic and static obser-
vation models are used to highlight the fact that
we build our network from observations that con-
tribute to the estimation of parameters either
through dynamic or static equations.

3.1 Dynamic observation models

The dynamic observation models are, essentially,
two. One model is the set of the INS mechaniza-
tion equations and the other model expresses the
“continuity” of gravity along the aircraft trajec-
tory.

The mathematical model associated to SINS
navigation is given by the well-known mecha-
nization equations (1), that are usually extended
with the angular rate sensors and accelerome-
ters calibration states and models. The choice of
these models has to guarantee that the estimated
calibration parameters will not absorb other kind
of effects, specially anomalous gravity. Investiga-
tions published in Nassar et al (2003) show that

a linear calibration model is not sufficient, but
in this paper, to fix the ideas and for the sake of
simplicity we restrict intentionally the calibra-
tion states to time dependent biases:
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where F,,, and F,.. are the calibration model
functions of the angular rate sensors (o®) and ac-
celerometers biases (a’). (Needless to say, the
calibration functions and the calibration states
depend on the type of sensors.)

The system (3) can be extended with a new
mathematical model —GDT model— that shows
the changes of the gravity disturbance along the
trajectory of a moving vehicle with respect to
time. The changes of the gravity vector g¢ along
the trajectory with respect to time can be given
—Jekeli (2001)and Schwarz and Wei (1995)— by

= (G° = [wicx][wiex])v® = AG“,  (4)

where G¢ is the gravitational gradient tensor.
For the gravity dlsturbance vector, similar dif-
ferential equations — 5g = AG°v® — are ob-
tained. If no gravity gradiometer measurements
are available AG°v° can typically be modelled by
simple stochastic models. Then, to fix the ideas
and to simplify the modeling, the gravity distur-
bance can be represented by a random walk.
Now the dynamic observation models formed

by SINS mechanization equations (3) and GDT
mode] are:

VEL: 7°=v°+wy

FB: ¢ = Ry(f*+wh +a’) — 2w, xJv+
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WIB : Rj[(w zb+w +0")x] — [wg. x| Ry
OB : Foyr(0® +wd)
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GDT : 69 = wy

These models are time dependent equations of
the type (2), where £(t) = (f°,w%)T and z(t) =
(r€7ve,R§7ége,ab,ob)T.

3.2 Static observation models

The static observation models considered are:
the coordinate update point (CUPT), the ve-
locity update point (VUPT), the zero veloci-
ty update point (ZUPT), the gravity update



point (GUPT), the static gravity update point
(SGUPT) and the cross-over points (XOVER).

CUPT model. A coordinate update is a
point where the position of the platform is known
from an independent procedure (usually GPS).
The CUPT equation is pg 4+ wp, = 7°.

VUPT model. If instead of the position the
speed is also known, the associated equation is
Vg + Wy = vE.

XOVER model. Usually, the trajectory of
gravimetric flight follows a regular pattern. The
intersection points of the trajectory are known as
cross-overs. Since, in practice, actual intersec-
tions are hard to materialize, horizontal obser-
vations with small height differences are allowed
for the cross-over points. The cross-over obser-
vation equation imposes that gravity is the same
in coincident points.

ZUPT model. The zero velocity update is
based on v® = 0 and it is widely used in terres-
trial inertial surveying. In a gravimetric flight, it
can only be applied at the beginning and at the
end of the survey. This model is equivalent to a
VUPT with v = 0.

SGUPT model. For every ZUPT equation,
gravity can be considered as a constant function.
It can be seen as a XOVER observation.

GUPT model. If gravity is known in some
point of the trajectory, the following equation is
obtained: gy + wg = dg° + y(r°).

3.3 Discretization of the dynamic
observation equations

The dynamic observations equations are SDE.
SDE arise naturally from real-life ODE (ordinary
differential equations) whose coefficients are only
approximately known because they are measured
by instruments or deduced from other data sub-
ject to random errors. The initial or boundary
conditions may be also known just randomly. In
these situations, we would expect that the solu-
tion of the problem be a stochastic process.
Like in ODE theory, certain classes of SDE
have solutions that can be found analytically
using various formulas, and others —most of
them— have no analytic solution. There are
several numerical techniques to solve SDE —
Kloeden and Platen (1999). All of them are

based on their correct stochastic discretization
which is not a trivial issue.

Now, in this paper, we will limit the discus-
sion to a simplest approximation method: the
explicit midpoint method or leap-frog method.
Consider for a function z[n], &[n] = A(z,n) =
(z[n+1]—x[n—1])/(26t). This method is not ge-
nerally acceptable, because the existence of weak
stabilities. However, in this paper, it suffices to
illustrate the use of NA for INS/GPS-gravimetry.

Then, the previous equations —the dynamic
and the static— can be transformed into a finite
set of observation equations. They can be dis-
cretized and afterwards written as £ +w = F(z),
where ¢ are the observations (in our case f°, wj),
w are the residuals of £ and x are the parameters
to be determined (r¢, v, dg¢, a®, o°, q):

VEL: 04 wy=v%n]—A(re,n)
FB:  f’n] +w} = —ab[n]—

[
—2[wi, x]v%[n] = A(v,n)

WIB : wfb[n] + wz} = *Ob[n] + RS(Q»”) wiee+

OB:  0+wy=A(0%n)— Fyy-(0°[n])
AB : 0+ wo = A(a’,n) — Fuec(ab[n])
GDT: 0+ wo=A(0g°%n)

3.4 Discretization of the static ob-
servation

Following the same procedure as in the previous
section —discretize and arrange to £ + w =
F(z)— for each static observation equations, we
obtain:

CUPT:  po+w, =rcn]
VUPT : vo + w, = v°[n]
GUPT:  go +wy = 6g°[n] +~(r¢[n])
XOVER: 04wy = ||0g°[n] +~v(r¢n])||—
—llog®[k] +~(r[kDl
3.5 Final INS/GPS-gravimetric
network

As a result of the preceeding discussion, our
problem can be reduced to the solution of the
system of equations formed by the dynamic mod-
els —VEL, FB, WIB, AB, OB, GDT— and the
static models —CUPT, GUPT, VUPT, XOVER.
The above mathematical models have been im-
plemented in the GeoTeX/ACX software system
—Colomina et al. (1992)— developed at the ICC



Model l x

IMU data
VEL 0 ré[n — 1], r¢[n + 1], v¢[n]
FB fPlnl - a’ln], gln], 8g°In], r[n]
vén — 1], v¢[n], v¢[n + 1]
WIB whn]  o’[n], q[n-1], a[n], qn+1]
OB 0 o[n — 1], o*[n], o®[n + 1]
AB 0 a’ln — 1], a®[n), a®[n + 1]
GDT 0 dg¢[n — 1], 6g°[n + 1]
GPS data
CUPT Do r¢[n]
VUPT o vé[n]

Additional data

GUPT 90 dg¢[n], r¢[n]
XOVER 0 rn], r[k], 89°[n], dg°[K]
Table 1: INS/GPS-gravimetry mathematical

models for NA.

since 1988. The associated observations and pa-
rameters for each model are shown in Table 1.

Solving the system is to perform an optimal
estimation of its parameters in the sense of least-
squares; i.e. the expectation of the parameters
and their covariance is known. We emphasize
the possibility to compute the covariance of a li-
mited number of selected parameters —perform
a selective inversion of the normal matrix— and
the variance component estimation. In our case,
these selected parameters will be the gravity dis-
turbances and their covariances for further geoid
determination.

4 Implementation issues

First consider that IMU data is collected at
Hz(IMU) frequency (50Hz < Hz(IMU) <
200Hz for operational environments), the
GPS data at Hz(GPS) frequency (1Hz <
Hz(GPS) < 5Hz) and the additional data can
be collected a different frequencies. Second, con-
sider that we want to compute all the parameters
at Hz(IMU) frequency. Then the size of the sys-
tem increase considerably. This can be shown in
Table 2 for some operational environments.

Although the large size of the associated nor-
mal matrices, they are essentially of the band-
bordered type and we can apply sparse ma-
trix techniques, fill-in reduction techniques and
memory-to-disk paging to solve the system of li-
near equations. If this is done, the computational
load is comparable to that of SSA.

Case 1 Case 2 Case 3 Cased
H.(GPS) 1 1 5 2
H,(IMU) 200 50 200 50
t (s) 10 800 14 400 14 400 11 301
NxovEer 30 000 332 150
Nivu 2 160 000 720 000 2 880 000 565 050
Naps 10 800 14 400 72 000 22 602
Ngupr 1907
N:q 38 912 400 13 033 200 52 056 000 10 572 763
Npar 38 880 000 12 960 000 51 840 000 10 170 900
T 0.0008 0.0056 0.0042 0.0380

Table 2: Information data of some operative en-
vironments at the ICC and UofC. Case 1: Ap-
planix flight (ICC). Case 2: CASI flight (ICC).
Case 3: GeoMobil (ICC). Case 4: Rockies’95
(UofC). Neg = N:q + Ngi. N:q = 18Nrmyu +

Neqg—Npar
3Ngps. T = —LE (average redundancy).

If it is still necessary to reduce the size of the
system, it is possible to take into account that
some of the parameters —or unknowns— have a
slow variation in time and subsets of them can
be grouped in a single one. This can conside-
rably reduce the number of unknowns. For ins-
tance, it should be possible to compute ab, o?,
0g¢ at Hz(GPS) frequency and r¢, v¢ and ¢ at
Hz(IMU) frequency. In this case, Npar is re-
duced to half (19537200 in Case 1, 6609600 in
Case 2, 26568000 in Case 3 and 5288868 in Case
4 respectively).

Table 2 also shows the small average redun-
dancy of the systems to be solved (0.3 < r, <
0.9 for geodetic and photogrammetric bund-
le networks). It is well-known that accurate
least-squares adjustment needs high redundancy.
Looking at Table 2, the number of IMU data and
GPS data cannot be increased without increa-
sing the number of parameters to be determined.
Then to increase the redundacy of the system, we
have to increase the number of additional equa-
tions. So, it is advisable to use all the existing
observational information to increase the redun-
dancy of the system.

It is under investigation the study of how to
plan the surveys to increase them: cross-overs
(repetition or/and intersection of flight lines),
ZUPT periods at the beginning and at the end
of the survey, upwarded gravity points, etc.



5 Conclusions, ongoing work
and further research

It has been seen that the determination of the
anomalous gravity by inertial techniques is criti-
cally employee of the capacity to separate the er-
rors of the system of the effects of the gravitatio-
nal field. This separation is based mainly on the
different characteristics from both signals: the
errors of the inertial sensors (INS) can be rea-
sonably considered like time function, whereas
the variations of the gravitational field are only
function of the position.

Actually, SINS airborne gravimetry has been
mainly based on Kalman filtering (SSA ap-
proach). In Kalman, the error separation is ob-
tained, at first, by the use of different correla-
tions of the bias and the variations of the gravi-
tational field. The advantage of Kalman filter is
the good physical description of the instruments
errors, but it displays a serious disadvantage by
the incapacity of handling space correlations, like
the condition of cross-over points.

It has been presented that the development
of an adjustment method in genuinely geode-
tic post-process with the explicit purpose to de-
termine precise gravity anomalies taking advan-
tage at maximum the space characteristics of the
gravitational field. This method tries to jointly
deal with the bias like function the time and the
anomalous gravity like function of the position,
by means of the resolution of the corresponding
system of equations.

This system of equations can be, at first, very
large and its redundancy small. It is under inves-
tigation some methods (numerical and geodetic)
to handle with and to increase its redundancy.
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